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1. Introduction

We consider infinite particle systems in Rd. The usual object of study is the point measure-valued
process N = {N(t), t ∈ [0, 1]}, where N(t) is the empirical measure of the system at time t, i.e., N(t) =∑

j δξj(t), where {ξj(t)}j are the positions of the particles present at that time. For many particle systems
it is possible to show that a high-density fluctuation limit of N exists, which is a process with values in
S ′(Rd), the space of tempered distributions on Rd. We refer to this as the “temporal” approach due to
the role of time as a parameter. In many cases a more informative analysis is based on the trajectories of
the particles. The system is described by the trajectorial empirical measure N =

∑
j δξj , where {ξj}j are

the paths of the particles. Assuming that the particle motion is continuous, N is a random point measure
on C ≡ C([0, 1],Rd). The problem now consists in obtaining a high-density fluctuation limit for N . We
call this the “trajectorial” approach. This approach has been taken by Martin-Löf [24], Gorostiza [13],
Tanaka and Hitsuda [29], Tanaka [28], Sznitmann [27], Grigorescu [17] and others, for different particle
models, including some with branchings or interactions.

By analogy with the temporal approach, one expects that the trajectorial fluctuation limits will take
values in a space of distributions on C. In most of the above mentioned papers the question of defining
a general state space for the limits was not considered, so the limits were not characterized as random
elements of some topological space, or ad hoc spaces were used in some cases. A convenient general
nuclear space of distributions on C, denoted here by S(C)′, was constructed by Gorostiza and Nualart
[14], and examples were given for the fluctuation limits of the particle systems studied in some of the
papers cited above. The nuclear property of S(C)′ is important in connection with the use of the Lévy
continuity theorem [25].

For many models the particle system is assumed to start off (at time 0) from a configuration given
by a Poisson random measure on Rd with intensity measure µ, and the fluctuation limit turns out to be
Gaussian. If the initial configuration is given instead by a Cox random measure (i.e., a doubly stochastic
Poisson measure, which is obtained by randomizing the intensity measure µ of a Poisson measure), we
then have a Cox system of random motions. In this case the fluctuation limit is in general non-Gaussian
and its characteristic functional is given in terms of the Laplace functional of µ. A simple Cox system of
independent Brownian motions was studied by Feldman and Iyer [12] in the temporal approach. High-
density temporal fluctuation limits of systems of independent motions are called “density process” (see
examples [1, 2, 4, 6, 12, 24, 30]).

In this paper we give a general trajectorial fluctuation limit theorem for Cox systems of independent
motions (Theorem 2.1). The particle motions are quite general, since Markov or martingale properties are
not needed in this approach (Corollary 2.1); in particular they include fractional Brownian motion, which
is non-Markovian. Stochastic models based on Cox measures have many areas of application: physics,
biology, ecology, risk theory (see, e.g., [16]).

In some cases it is possible to derive temporal fluctuation limits from trajectorial fluctuation limits
by means of a “time-localization” procedure that has been developed by Bojdecki et al [8], and Bojdecki
and Gorostiza [5, 7]. Roughly speaking, the time-localization consists in “projecting” a random element
of S(C)′ at each time t ∈ [0, 1] in order to obtain a process with paths in C([0, 1],S ′(Rd)), in a consistent
way with the temporal approach. As an example we will show that the results of Feldman and Iyer [12],
and even generalizations of them in several ways, are easily obtained with this method (Theorem 3.1 and
Remark 3.3). In another example we consider a Cox system of independent motions which is driven by
a (α, d, β)-superprocess. The purpose of this example is to study the fluctuations of a Cox system of
motions with a more complex structure than the one considered in [12], and such that the intensity of the
Cox measure arises from a specific particle model. For this example, and for trajectorial fluctuations of
Cox systems in general, the time-localization of trajectorial results poses new technical difficulties which
remain to be solved.

In the Appendix we give some background on the spaces of test functions S(C) and distributions
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S(C)′, the space of p-tempered measures Mp(Rd), and convergence in distribution of random p-tempered
measures via Laplace functionals.

2. Model and results

Fix p > 0. Let µn be a random measure in Mp(Rd), n = 1, 2, . . .. Given µn, let Πn be a Poisson random
measure on Rd with intensity measure µn. The random point measure on Rd so obtained is called a Cox
measure (see [21], Proposition 10.5, for existence). For each x ∈ Rd, let ξx = {ξx(t), t ∈ [0, 1]} denote a
continuous process starting from x. For any n we define the Cox particle system by letting the process
ξx evolve from each point x of Πn, these processes being independent.

We denote by Mx the distribution of ξx on the space C ≡ C([0, 1],Rd), and (under a suitable
measurability assumption) we put

dMn = dMxµn(dx), n = 1, 2, . . . . (2.1)

Thus Mn is a random measure (σ-finite) on C.
Let Nn denote the trajectorial empirical measure of the system, i.e.,

Nn =
∞∑

j=1

δξxj , (2.2)

where {xj}j are the points of Πn and δω is the Dirac measure at ω ∈ C. We are interested in the limit
behaviour of the trajectorial fluctuation Xn defined by

Xn =
1√
n

(Nn −Mn), (2.3)

when the density of the system increases towards infinity (as n→∞). We regard Nn and Xn as random
elements of S(C)′.

In what follows, ⇒ denotes convergence in distribution of random elements of a topological space,
|| · ||∞ is the usual sup norm on C, and 〈·, ·〉 means duality (in particular, integration).

Our main result is the following theorem.

Theorem 2.1. Assume that

(i)
E||ξx − x||n∞ ≤ Jn

√
n! (2.4)

for all x ∈ Rd, n = 1, 2, . . . , and some constant J ;
(ii) the function x 7→ E|F (ξx)| is continuous for each F ∈ S(C);
(iii)

µn

n
⇒ µ in Mp(Rd) as n→∞, (2.5)

for some random element µ of Mp(Rd).

Define M by
dM = dMxµ(dx). (2.6)

Then Xn ⇒ X in S(C)′, where X is a random element of S(C)′ with characteristic functional

E exp{i〈X, F 〉} = E exp
{
−1

2
〈M, F 2〉

}
, F ∈ S(C). (2.7)
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Note that the right-hand side of (2.7) can be written as

Lµ

(
1
2
〈M ·, F 2〉

)
,

where Lµ is the Laplace functional of µ.
Observe that if µ is non-random, then X is Gaussian. In the general case the law of X is a mixture

of Gaussian distributions. By analogy with doubly stochastic Poisson systems, X can be considered as a
“doubly stochastic white noise” on C.

This theorem should be compared to Theorem 1.2 of [7]. The main feature of the present version
is that the µn are random, satisfying assumption (iii), whereas in that paper we had µn = nµ with a
non-random µ. On the other hand, due to the randomness of µn the assumptions on ξx have to be slightly
stronger than those in [7], but they are sufficiently general to cover interesting examples.

Proof of Theorem 2.1.
Step 1. The measures Mn and M can be regarded as (random) elements of S(C)′. This follows from
Theorem 2.5 of [8] by assumption (ii), and because the measures µn and µ are assumed to be p-tempered
(in the terminology of [8], Mn and M are admissible measures). In consequence, Xn is actually a random
element of S(C)′.

Step 2. We prove that for each F ∈ S(C) the function x 7→ E|F (ξx)| belongs to the space Cp(Rd) (see
Appendix, A.2). Due to assumption (ii), it suffices to show that the function x 7→ (1 + |x|2)pE|F (ξx)| is
bounded for each p > 0. To simplify the notation we consider the case d = 1.

Let F (x+ ω) =
∑∞

n=0 In(f(x))(ω), x ∈ R, ω ∈ C0 ≡ C0([0, 1],R), be the chaos expansion of F (x+ ·)
in the Wiener space C0. By (2.6) of [14] we have

|F (ξx)| = |F (x+ (ξx − x))| ≤
∞∑

n=0

n∑
k=0

n!
(n− k)!

√
k!
||ξx − x||n−k

∞ 2−(j−1)n/2||fn(x)||H�n
j

for each j ≥ 1 (see Appendix, A.1, for the definitions of H�n
j and Hj below). Hence by (2.4) we obtain

E|F (ξx)| ≤
∞∑

n=0

n∑
k=0

n!
(n− k)!

√
k!
Jn−k

√
(n− k)!2−(j−1)n/2||fn(x)||H�n

j

=
∞∑

n=0

n∑
k=0

√(
n

k

)
Jn−k

√
n!2−(j−1)n/2||fn(x)||H�n

j

≤
∞∑

n=0

(1 + J)n2−(j−1)n/2
√
n!||fn(x)||H�n

j

≤

( ∞∑
n=0

(1 + J)2n2−(j−1)n

)1/2( ∞∑
n=0

n!||fn(x)||2
H�n

j

)1/2

= (1− (1 + J)22−(j−1))−1/2||F (x+ ·)||Hj ,

provided that j is sufficiently large (such that (1 + J)22−(j−1) < 1). Now it suffices to observe that
from the definition of S(C) = S(Rd,H) (see the Appendix and [14]) it follows that the function x 7→
(1 + |x|2)p||F (x+ ·)||Hj is bounded for each p ≥ 0.

Step 3. As the space S(C) is Fréchet nuclear, the Lévy continuity theorem and the Bochner-Minlos
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theorem hold in S(C)′ [25, 18]. Hence, to prove the theorem it suffices to show that

E exp{i〈Xn, F 〉} → E exp
{
−1

2
〈M, F 2〉

}
as n→∞ (2.8)

for each F ∈ S(C). (Note that the function F 7→ E exp{− 1
2 〈M, F

2〉} is continuous by Theorem 2.5 (b)
of [8].)

Generalizing slightly formula (4.3) of [7] we obtain

E [exp{i〈Nn, F 〉}|µn] = exp{〈µn, Ee
iF (ξ·) − 1〉}, (2.9)

hence, by (2.3) and observing that by (2.1), 〈Mn, F 〉 = 〈µn, EF (ξ·)〉, we have

E [exp{i〈Xn, F 〉}|µn]

= exp
{
− i√

n
〈µn, EF (ξ·)〉

}
exp{〈µn, Ee

i√
n

F (ξ·) − 1〉}

= exp
{
−1

2

〈
µn

n
,EF 2(ξ·)

〉}
exp{〈µn, EGn〉}, (2.10)

where

Gn(x) = exp
{

i√
n
F (ξx)

}
− 1− i√

n
F (ξx) +

1
2n
F 2(ξx).

As

|Gn(x)| ≤ 1
6
|F 3(ξx)|
n
√
n

, (2.11)

we can write

exp{〈µn, EGn〉} = exp
{〈

µn

n
,

1√
n
E(F 3(ξ·)Hn)

〉}
,

where |Hn| ≤ 1
6 .

Let f(x) = E|F 3(ξx)|. Since F ∈ S(C) implies that F 3 ∈ S(C) (Appendix, A.1), by Step 2 we see
that f ∈ Cp(Rd). The real function ν 7→ 〈ν, f〉 on Mp(Rd) is continuous, hence∣∣∣∣〈ν, 1√

n
E(F 3(ξ·)Hn)

〉∣∣∣∣ ≤ 1
6
√
n
〈ν, f〉 → 0 as n→∞

uniformly in ν in a compact subset of Mp(Rd). In consequence,

exp
{
−1

2
〈ν,EF 2(ξ·)〉

}
exp
{〈

ν,
1√
n
E(F 3(ξ·)Hn)

〉}
→ exp

{
−1

2
〈ν,EF 2(ξ·)〉

}
as n→∞

uniformly on compact subsets of Mp(Rd). On the other hand, again by Step 2, the function

ν 7→ exp
{
−1

2
〈ν,EF 2(ξ·)〉

}
is continuous on Mp(Rd). Hence by (2.10) and (2.5) and by Theorem 5.5 of [3], we obtain

E[exp{i〈Xn, F 〉}|µn] ⇒ exp
{
−1

2
〈µ,EF 2(ξ·)〉

}
= exp

{
−1

2
〈M, F 2〉

}
in the sense of the convergence in distribution of real random variables.
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Finally, it suffices to observe that the random variables on the left-hand side of (2.9) are obviously
uniformly integrable, so (2.8) follows. 2

Remark 2.1. Suppose that each particle in the system has a “charge”, either +1 or −1, assigned to
it with equal probabilities and independently of the charges of the other particles. Then, instead of
fluctuations Xn of the empirical measures one can investigate the limit behaviour of the (trajectorial)
“total charge”, i.e.,

Yn =
1√
n

∞∑
j=1

εjδξxj ,

where ε1, ε2, . . . are Rademacher random variables, independent of the other random quantities involved
in the model. Models of this kind have been considered, e.g., in [1, 12] (in the temporal context). It
is not difficult to see that in this case, and under the assumptions of Theorem 2.1, we obtain the same
result, i.e.,

Yn ⇒ X

in S(C)′, where X is determined by (2.7). Indeed, an argument similar to the one used to derive formula
(2.9) yields

E[exp{i〈Yn, F 〉}|µn] = exp
{〈

µn,
1
2
(Ee

i√
n

F (ξ·) + Ee
− i√

n
F (ξ·))− 1

〉}
,

and this again has the form exp{− 1
2 〈

µn

n , EF
2(ξ·)〉} exp{〈µn, EG

′
n〉}, with G′

n satisfying (2.11).
Let us discuss briefly assumption (ii) of the theorem. We have the following simple proposition.

Proposition 2.1. Under assumption (i) of Theorem 2.1, if the function x 7→ ξx ∈ C on Rd is continuous
a.s., then assumption (ii) of Theorem 2.1 is satisfied .

Proof. Fix F ∈ S(C). It is known that F is continuous on C [14], hence the function x 7→ |F (ξx)|
is continuous. Step 2 of the proof of Theorem 2.1 implies that supxEF

2(ξx) < ∞, since F 2 ∈ S(C).
Therefore the random variables {F (ξx), x ∈ Rd} are uniformly integrable, so the claimed property follows.
2

Finally, we give some examples of random motions ξx to which Theorem 2.1 applies.

Corollary 2.1. Assume (2.5). Then Xn ⇒ X and (2.7) holds for any of the following cases:

(a) ξx = x+ ξ0, where

(i) ξ0 is the standard Brownian motion in Rd, or

(ii) ξ0 is a diffusion in Rd starting at the origin, i.e., a solution of the stochastic differential equation

dξ0(t) = b(t, ξ0(t))dt+ σ(t, ξ0(t))dB(t), (2.12)

ξ0(0) = 0, where B is a standard Brownian motion in Rd, σ is bounded and b has at most linear
growth in the space variable, or

(iii) ξ0 is the standard Brownian bridge in Rd, or

(iv) ξ0 is a fractional Brownian motion starting at the origin with arbitrary Hurst parameter h ∈ (0, 1).

(b) {ξx, x ∈ Rd} is a system of diffusions in Rd, i.e., solutions of (2.12) with ξx(0) = x, where b and σ
are Lipschitz and bounded .

Proof. It suffices to apply estimations derived in [7,8], and use Theorem 2.1, Proposition 2.1, and basic
properties of stochastic flows [23]. 2
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3. Time-localization of a simple Cox system

In this section we consider a particular case of the Cox system discussed in Section 2. Namely, we
assume that

µn = ρnν, n = 1, 2, . . . , (3.1)

where ν is a fixed non-random measure in Mp(Rd), and ρ1, ρ2, . . . are real positive random variables such
that

ρn

n
⇒ ρ as n→∞, (3.2)

for some non-negative random variable ρ. (2.5) is then satisfied with µ = ρν.
Define

dN = dMxν(dx); (3.3)

then, clearly, Mn and M defined by (2.1) and (2.6) respectively, have the forms Mn = ρnN and M = ρN.
Let Xn be defined by (2.3). By Theorem 2.1 we obtain immediately the following proposition.

Proposition 3.1. Under the assumptions of Theorem 2.1,

Xn ⇒
√
ρX0 in S(C)′, (3.4)

where X0 is a centered Gaussian random element of S(C)′, independent of ρ, with variance functional

E〈X0, F 〉2 = 〈N, , F 2〉, F ∈ S(C). (3.5)

Proof. It suffices to observe that the characteristic function of
√
ρX0 is given by (2.7). 2

Remark 3.1. A careful analysis of the proof of Theorem 2.1 shows that by the simple form of the
measure µn given by (3.1), the assumptions of Theorem 2.1 can be weakened in this case. Instead of (i)
and (ii) it suffices to assume that N is an admissible measure in the sense of [8].

It turns out that in the present case it is easy to deduce a temporal result (see the Introduction) from
Proposition 3.1. For any r > 0, consider a Poisson measure in Rd with intensity measure rν. Let N 0

r

denote the corresponding trajectorial empirical measure defined by (2.2), and let

N0
r (t) =

∑
j

δξxj (t), t ∈ [0, 1], (3.6)

be the empirical process. Let X0
r andX0

r (t) denote the trajectorial and temporal fluctuations, respectively,
i.e.,

X
0
r =

1√
r
(N 0

r − rN) and X0
r (t) =

1√
r
(N0

r (t)− rν).

X0
r is regarded as a process with paths in C([0, 1],S ′(Rd)).

The following lemma follows immediately from the results of [7].

Lemma 3.1. Let the processes ξx be of one of the types in Corollary 2.1. Then

(a) X0
r ⇒ X

0 in S(C)′ as r →∞, where X0 is defined in Proposition 3.1;
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(b) X0
r ⇒ X0 in C([0, 1],S ′(Rd)) as r → ∞, where X0 is a continuous centered Gaussian process in

S ′(Rd) with covariance functional

E〈X0(s), ϕ〉〈X0(t), ψ〉 =
∫
R

d
Eϕ(ξx(s))ψ(ξx(t))ν(dx), s, t ∈ [0, 1], ϕ, ψ ∈ S(Rd).

Remark 3.2.

(a) Part (a) of the lemma follows also, of course, from Proposition 3.1.
(b) Here again the assumptions on ξx can be weakened, especially in part (a) of the lemma.
(c) If ν is the Lebesgue measure on Rd and ξx is the Brownian motion in Rd starting from x, then the
process X0 is the standard Brownian density process.

In [8], part (b) of the lemma is derived from part (a) by means of the time-localization procedure.
The main point is that X0 is a linear random functional (in the sense of [20]), continuous on S(C) with
the topology induced by Lq(Ñ), where Ñ(dω) = (1 + |ω(0)|2)pN(dω), for some q ≥ 1 (q = 4 turns out to
be appropiate). In the terminology of [7], X0 is an admissible random element of S(C)′. Then X0 can be
uniquely extended to functionals on C of the form Fϕ,t(ω) = ϕ(ω(t)), ϕ ∈ S(Rd), t ∈ [0, 1], ω ∈ C (which
do not belong to S(C), [5]), and we have 〈X0(t), ϕ〉 = X

0(Fϕ,t). We say that X0 is the time-localization
process of X0.

After this preparation, let us go back to our Cox system described at the beginning of this section.
Let Nn(t) be the corresponding empirical process and consider the fluctuation process

Xn(t) =
1√
n

(Nn(t)− ρnν), t ∈ [0, 1].

Observe that
Nn(t) = N0

ρn
(t), (3.7)

where N0
r is given by (3.6).

We have the following theorem.

Theorem 3.1. Let the process ξx be of one of the types in Corollary 2.1. Then

Xn ⇒
√
ρX0 in C([0, 1],S ′(Rd)),

where X0 is the process defined in Lemma 3.1 (b), independent of ρ.

Proof. It is clear that
√
ρX0 is an admissible random element of S(C)′ and

√
ρX0 is its time-localization

process in the sense explained above.
Let

L = span {S(C) ∪ {Fϕ,t : ϕ ∈ S(Rd), t ∈ [0, 1]}}.

Recall that
sup
r>0

E〈X0
r, F 〉4 ≤ K〈Ñ, F 4〉, F ∈ L, (3.8)

for some constant K (see [7], (4.6) and Theorem 2.4). Fix an ε > 0. By (3.2) there is an r0 > 0 such that

P

(
ρn

n
> r0

)
< ε, n = 1, 2, . . . (3.9)
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For any F ∈ L, by (3.7) we have

E(|Xn(F )| ∧ 1) ≤ ε+ E(|Xn(F )| ∧ 1)1{ ρn
n ≤r0}

= ε+ E

(∣∣∣∣√ρn

n
X

0
ρn

(F )
∣∣∣∣ ∧ 1

)
1{ ρn

n ≤r0}

≤ ε+
√
r0(EX0

ρn
(F )4)1/4

≤ ε+
√
r0K〈Ñ, F 4〉1/4,

by (3.8), since ρn and {X0
r, r > 0} are independent. This, (3.4) and Proposition 3.1 of [7] imply that the

finite-dimensional distributions of Xn converge to those of
√
ρX0.

By the theorem of Mitoma [26], to complete the proof it suffices to show that the family {〈Xn, ϕ〉, n =
1, 2, . . .} is tight in C for each ϕ ∈ S(Rd). By Lemma 3.1 (b) we know that {〈X0

n, ϕ〉, n = 1, 2, . . .} is
tight, and hence the family {r〈X0

n, ϕ〉, r ∈ [0, r′], n = 1, 2, . . .} is also tight for each r′ > 0. Given ε > 0,
let r0 satisfy (3.9). Fix a compact subset Γ of C such that

P (r〈X0
n, ϕ〉 6∈ Γ) < ε for r ∈ [0,

√
r0], n = 1, 2, . . . . (3.10)

By (3.7) we have

P (〈Xn, ϕ〉 6∈ Γ) = P

(√
ρn

n
〈X0

ρn
, ϕ〉 6∈ Γ

)
≤ ε+ P

(√
ρn

n
〈X0

ρn
, ϕ〉 6∈ Γ,

ρn

n
≤ r0

)
≤ 2ε,

by (3.10) and the independence assumption. 2

Remark 3.3.

(a) Remark 2.1 applies to the present case as well, and both Proposition 3.1 and Theorem 3.1 have their
counterparts for “charged” particle systems, with the same limits.

(b) Theorem 3.1 was obtained in [12] (in the “charged” particle version) by a different method, in the
special case when ξx is the Brownian motion starting from x, ν is the Lebesgue measure on Rd, and the
ρn are integer-valued.

(c) If the process X0 satisfies a Langevin equation of the form dX0(t) = AX0(t)dt + dW (t), for some
S ′(Rd)-valued Wiener process W (e.g., in the case of the Brownian density process, with A = 1

2∆∗ and
E〈W (s), ϕ〉〈W (t), ψ〉 = (s ∧ t)

∫
∇ϕ(x) · ∇ψ(x)dx [1, 4, 24, 30]), then the limit process X =

√
ρX0

obviously satisfies dX(t) = AX(t)dt+
√
ρdW (t).

4. A Cox system driven by a superprocess

We start with some background on branching particle systems and superprocesses [9, 19]. (In the
context of superprocesses the space of measuresMp(Ṙ

d
) is used, where Ṙ

d
= Rd∪{τ}, τ being an isolated

point. This space is not needed in the present paper.)
We consider a system described as follows. At time 0 the particles are distributed according to a

Cox random measure with intensity ν, which is a random element of Mq(Rd). The particles evolve

9



independently according to the symmetric α-stable process, α ∈ (0, 2], they branch at rate 1 with a
critical (1+β) branching law, β ∈ (0, 1] (whose generating function is s+(1+β)−1(1− s)1+β , s ∈ [0, 1]),
and the offspring particles obey the same rules. A high-density and small-life limit of this system yields
an Mq(Rd)-valued Markov process Y = {Y (t), t ≥ 0}, called the (α, d, β)-superprocess. (The value of q
is chosen so that q > d

2 , and in addition q < d+α
2 if α < 2). The Laplace functional of Y (t) is given in

terms of the Laplace functional of ν by

E exp{−〈Y (t), ϕ〉} = E exp{−〈ν, Utϕ〉}, ϕ ∈ Kq(Rd)+; (4.1)

Utϕ is the unique non-negative solution of the non-linear equation

Utϕ = Ttϕ− γ

∫ t

0

Tt−s(Usϕ)1+βds, (4.2)

where γ = 1/(1 + β) and (Tt) is the semigroup of the α-stable process. Note that Y (0) = ν. A basic fact
is that for each t ≥ 0, the empirical measure N(t) of the branching particle system at time t is a Cox
random measure whose intensity is Y (t), the state of the superprocess at the same time. (This follows
from the form of the Laplace functionals of N(t) and Y (t) and the uniqueness of the solutions of the
corresponding log-Laplace equations [11, 15].)

We now consider a modification of the particle system as follows. Let the system evolve as described
above until a fixed time t0, at which the branching mechanism stops and the particles just go on moving
independently. Moreover, at time t0 the particle motion can change to a different one. Taking t0 as the
new origin of time, we wish to investigate the trajectorial fluctuations of the system as the density of
particles tends to infinity. This model may have some physical interest, but our aim here is only to study
the trajectorial fluctuations of a Cox system of independent motions which is driven by the non-trivial
and interesting random measure Y (t0). Note that even if the measure ν is deterministic, the initial
condition (at time t0) is of a different type than that of the model in the previous section.

Let the Cox measure that initiates the branching particle system (at time 0) have intensity nν, n a
positive integer, and let Yn denote the corresponding superprocess. Thus, our Cox system of independent
motions is driven by the random measure Yn(t0). We must verify the validity of the assumption (iii) of
Theorem 2.1, namely µn/n⇒ µ in Mp(Rd). This is a consequence of the following lemma.

Lemma 4.1. For any p > q and each t ≥ 0,

Yn(t)
n

⇒ T ∗t ν in Mp(Rd),

where T ∗t is the adjoint of Tt.
The proof of this lemma is an easy combination of Lemma A.2.2 and standard methods in the theory

of superprocesses, but we give it for the benefit of a reader not acquainted with the subject.

Proof. We have from (4.1) and (4.2)

E exp
{
−
〈
Yn(t)
n

, ϕ

〉}
= E exp

{
−
〈
nν, Ut

ϕ

n

〉}
, ϕ ∈ Kq(Rd)+, (4.3)

and 〈
nν, Ut

ϕ

n

〉
=
〈
nν, Tt

ϕ

n

〉
− γHn = 〈ν, Ttϕ〉 − γHn,

where

Hn =
〈
nν,

∫ t

0

Tt−s

(
Us
ϕ

n

)1+β

ds

〉
.
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Since Usϕ ≥ 0 (for ϕ ≥ 0), it follows from (4.2) that Usϕ ≤ Tsϕ. Hence

Hn ≤
〈
nν,

∫ t

0

Tt−s

(
Ts
ϕ

n

)1+β

ds

〉
≤ 1

nβ

〈
ν,

∫ t

0

Tt−s

(
Tsϕ

)1+β

ds

〉
≤ const.

t

nβ
〈ν, Ttϕ〉,

and 〈ν, Ttϕ〉 < ∞ because ||Ttϕ||q < ∞ for ϕ ∈ Kq(Rd) [10, 19]. Therefore Hn → 0, and from (4.3) we
have

E exp
{〈

Yn(t)
n

, ϕ

〉}
→ E exp{−〈T ∗t ν, ϕ〉}, ϕ ∈ Kq(Rd)+

The proof is finished by Lemma A.2.2. 2

The trajectorial fluctuation limit follows from Theorem 2.1. The particle motions (after time t0) are
denoted by ξx.

Proposition 4.1. Let the processes ξx be of one the types in Corollary 2.1. Then Xn ⇒ X in S(C)′ and
X is given by

E exp{i〈X, F 〉} = E exp
{
−1

2

〈
T ∗t0ν, 〈M

·, F 2〉
〉}

= Lν

(
1
2
Tt0〈M ·, F 2〉

)
, F ∈ S(C).

Note that
Tt0〈M ·, F 2〉(x) =

∫
R

d
pt0(x, y)EF

2(ξy)dy,

where pt is the transition probability density of the α-stable process. If ν is deterministic, then X is
Gaussian.

The main difficulty with the time-localization in this case is that there is not a single admissible
measure that works (such as N in the example of the previous section).

Appendix

A.1. The space S(C)′

We summarize the definitions of S(C) and S(C)′ [14].
Let C ≡ C([0, 1],Rd), C0 = {ω ∈ C : ω(0) = 0}, λ = the Lebesgue measure on Rd, W x = the Wiener

measure on C supported on the functions that take the value x ∈ Rd at t = 0, and W = the σ-finite
Wiener measure on C defined by dW = dW xλ(dx).

There exists a space H of test functions on C0 such that

H ⊂ L2(C0,W
0) ⊂ H′

is a nuclear Gelfand triple, and the space S(C) ≡ S(Rd,H) of smooth H-valued functions on Rd satisfies

S(C) ⊂ L2(C,W) ⊂ S(C)′,

which is also a nuclear Gelfand triple. S(C) is a nuclear Fréchet space, and since S(Rd,H) ∼= S(Rd)⊗̂H,
S(C) can be regarded as a space of test functions on C. Integer powers of elements of S(C) also belong
to S(C) [22].
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We need some precise information on the space H. For each j = 0, 1, 2, . . ., let Hj denote the closure
of D([0, 1],Rd) (the infinitely differentiable functions from [0, 1] into Rd that vanish at 0 and 1 together
with all their derivatives) with the norm( d∑

r=1

( j∑
i=0

∫ 1

0

(f (i)
r (t))2dt

))1/2

, f = (f1, . . . , fd).

Let H�n
j denote the completed symmetric tensor product of Hj with itself n times. An element F ∈

L2(C0,W
0) with Wiener chaos expansion F =

∑∞
n=0 In(fn) belongs to H if and only if

||F ||2Hj
:=

∞∑
n=0

n!||fn||2H�n
j

<∞

for all j = 0, 1, . . . . The || · ||Hj are seminorms which define the (Fréchet) topology in H.

A.2. The space Mp(Rd) and convergence of random meaures

Background for this material can be found in [9, 19].
We write 〈m, f〉 =

∫
fdm.

C(E) and M(E) designate the spaces of bounded continuous functions and Radon measures on a
topological space E, respectively. Cc(E) is the subspace of elements of C(E) with compact support. The
subset of non-negative elements of a function space is denoted with the index “+”. If E is a locally
compact metric space, the vague topology on M(E) is the smallest topology that makes the mappings
µ 7→ 〈µ, ϕ〉 continuous for all µ ∈ Cc(E).

For p > 0, we define

ϕp(x) = (1 + |x|2)−p, x ∈ Rd,

Kp(Rd) = {ϕ ∈ C(Rd) : ϕ = ψ + aϕp, ψ ∈ Cc(Rd), a ∈ R},
Cp(Rd) = {ϕ ∈ C(Rd) : lim

|x|→∞
ϕ(x)/ϕp(x) exists},

Mp(Rd) = {µ ∈M(Rd) : 〈µ, ϕp〉 <∞}.

The elements of Mp(Rd) are called p-tempered measures. Note that the Lebesgue measure λ belongs to
Mp(Rd) for p > d/2. The space Cp(Rd) is equipped with the norm ||ϕ||p = supx |ϕ(x)|/ϕp(x).

On Mp(Rd) we consider the p-vague topology, i.e., the smallest topology that makes the mappings
µ 7→ 〈u, ϕ〉 continuous for all ϕ ∈ Kp(Rd). The space Mp(Rd) is Polish. It is easy to see that Kp(Rd) is
|| · ||p-dense in Cp(Rd), so the mappings µ 7→ 〈µ, ϕ〉 are also continuous for ϕ ∈ Cp(Rd).

Lemma A.2.1.

(a) For each ϕ ∈ Cp(Rd)+, any compact subset of Mp(Rd) is contained in {µ : 〈µ, ϕ〉 ≤ k} for some
k > 0.
(b) For any p′ > p and k > 0, the set {µ : 〈µ, ϕp〉 ≤ k} is compact in Mp′(Rd).

Proof. (a) is obvious. To prove (b), first observe that the set is compact in M(Rd) in the vague
topology. Hence it suffices to prove that if µn → µ in M(Rd) and 〈µn, ϕp〉 ≤ k for n = 1, 2, . . . , then
〈µn, ϕp′〉 → 〈µ, ϕp′〉 <∞.
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Let em ∈ Cc(Rd)+, em(x) = 1 for |x| ≤ m, m = 1, 2, . . . , em ↑ 1 as m→∞. We have

〈µ, ϕp′〉 = lim
m→∞

〈µ, ϕp′em〉 = lim
m→∞

lim
n→∞

〈µn, ϕp′em〉 ≤ k.

It suffices now to write

|〈µn, ϕp′〉 − 〈µ, ϕp′〉| ≤ |〈µn, ϕp′〉 − 〈µn, ϕp′em〉|+ |〈µn, ϕp′em〉 − 〈µ, ϕp′em〉|
+ |〈µ, ϕp′em〉 − 〈µ, ϕp′〉|,

and observe that

|〈µn, ϕp′〉 − 〈µn, ϕp′em〉| =
∣∣∣∣∫
|x|>m

1
(1 + |x|2)p′−p

ϕp(x)(1− em(x))µn(dx)
∣∣∣∣

≤ k

(1 +m2)p′−p
.

2

Note that {µ : 〈µ, ϕp〉 ≤ k} is not compact in Mp(Rd).
For a random element µ of Mp(Rd), the Laplace functional Lµ is defined by

Lµ(ϕ) = Ee−〈µ,ϕ〉, ϕ ∈ Cp(Rd)+.

Let µn, n = 1, 2, . . . and µ be random elements of Mp(Rd). Convergence in distribution of µn to µ as
n→∞, denoted by µn ⇒ µ, is defined (as usual) by Ef(µn) → Ef(µ) as n→∞ for all f ∈ C(Mp(Rd)).

Lemma A.2.2. If µn ⇒ µ in Mp(Rd), then

Lµn
(ϕ) → Lµ(ϕ) as n→∞ (4.4)

for all ϕ ∈ Cp(Rd)+. Conversely, if (4.4) holds for all ϕ ∈ Kp(Rd)+, then µn ⇒ µ in Mp′(Rd) for any
p′ > p.

Proof. The first statement is clear. It is well known that the distribution of a random measure µ in
M(Rd) is uniquely determined by its Laplace functional on Cc(Rd)+ (e.g., [21], Lemma 10.1). Hence, to
prove the second statement it suffices to show that the family {µn}n is tight in Mp′(Rd).

By assumption, E exp{−〈µn, ϕp〉k} → E exp{−〈µ, ϕp〉k} for all integers k ≥ 0, and therefore, by the
Stone-Weierstrass theorem, Ef(exp{−〈µn, ϕp〉}) → Ef(exp{−〈µ, ϕp〉}) for all f ∈ C([0, 1],R). Hence
exp{−〈µn, ϕp〉} ⇒ exp{−〈µn, ϕp〉}, and consequently 〈µn, ϕp〉 ⇒ 〈µ, ϕp〉. The tightness of {µn}n now
follows by Lemma A.2.1. 2
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